
Analysis of the Calendering of Compressible Fluids 

TAI-SHUNG CHUNG, Celanese Research Company, Summi t ,  
New Jersey 07901 

Synopsis 

Assuming that the compressible behavior of polymeric melt obeys the Spencer-Gilmore equation 
of state, the effect of melt compressibility on calendering process has been investigated. The  com- 
pressible model is distinctly different from the incompressible model in three ways. (1) It has 
substantially lower maximum pressure, (2) the location having maximum pressure moves closer to 
the nip region; (3) the contact point shifts closer to the nip region. 

INTRODUCTION 

Calendering is one of the oldest known polymer processing techniques for 
producing a sheet or film of uniform thickness. The fundamental analysis of 
the fluid behavior in calendering was developed by Gaskelll and McKelvey2 for 
Newtonian and power law fluids. The analysis was extended by Brazinsky et 
aL3 and Kiparissides and Vlachop~ulos~, Alston and Astil15 studied hyperbolic 
tangent viscosity model fluids. Chung6 investigated Bingham plastic fluids. 
The nonisothermal case was solved by Dobbels and Mewis7 and Kiparissides and 
Vlachopoulos.8 Ehrmann et al.9 developed a theoretical analysis of calendering 
with unequal-sized rollers. Recently, Vlachopoulos and HrymaklO proposed 
a slip model which gave improved correlation between the calculated and the 
measured pressure distribution. 

Nearly all analyses published in the literature utilize the simplifying as- 
sumption of incompressible fluid behavior. Due to the tremendous pressure 
which develops in the region between the rolls, the compressibility of the molten 
polymer becomes significant. Thus, it is essential to examine the consequences 
of including compressible fluid behavior on this pressure field as a function of 
the operating variables in the calendering process. Therefore, the objective of 
this short note is to investigate the relationship between the fluid physical 
properties and the operational variables. 

MATHEMATICAL APPROACH 

The governing equations for the conservation of mass and momentum in cal- 
endering have been developed e l ~ e w h e r e ~ - ~ , ~ ~ J ~  using the lubrication approxi- 
mati0n.l" For the rectangular coordinate system of Figure 1 they are 

Q = 2 J h  PU dY 
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Fig. 1. Notations for the flow analysis in calendering. 

density ----Jws the Spencer-Gilmore equation of state14 

and shear stress is considered to obey the power law model 

Here the effect of pressure on the melt viscosity is neglected. This effect might 
become important if the process pressure is extremely high.ll For symmetric 
calendering, the pressure gradient can be easily obtained by solving the above 
equations with the boundary condition U ( h )  = UO and by assuming the sheet 
comes off the roll with the same speed UO: 

(5) ""=-( 2n + 1 ) n ~ g ( X 2 - X * 2 ) ( X 2 - x * 2 n  l -  
dx * (1 + x**)2n+l 

where the dimensionless variables P*, x * ,  and X are defined as 

P* = (h)n exp (g) 
m UO 

TABLE I 
Material Properties and Molding Conditions 

Material Polyethylene Polystyrene 

n 0.594 0.368 
EIR' ( O K )  2300 5910 

W (psi) 47600 27000 
vo (cc/g) 0.875 0.822 
R, (psi-cc/g."K) 43 11.6 
T ( O K )  420 450 
R (cm) 10 10 
(10 (cm/s) 30 30 

rn (P.sn-1) 126.9 0.5 
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Fig. 2. Typical pressure profiles for polyethylene: ( -  - - )  compressible model; (-) incompressible 
model; A0 = 0.45. 

and 

Equation (5) is similar to that of the incompressible, non-Newtonian fluid system 
except that A is no longer a constant in current studies. The pressure can be 
obtained by using a fourth-order Runge-Kutta integration method with the 
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Fig. 3. Pressure difference A P  as a function of Xo: (-) H o  = 0.01 cm; (GO-) Ho = 0.001 

cm. 
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4. Shift Ax* as a function of XO: (-) Ho = 0.01 cm; (-O-) Ho = 0.001 

following boundary condition: 

a t r  = XO, P = 0, U = UO 
This boundary condition implies that a t  x = xo 

A2 = A; = H1/Ho - 1 

XO = A0(2H&)1'2 

and 

These results also apply to incompressible non-Newtonian fluids. 

cm. 

RESULTS AND DISCUSSION 

Two different polymeric resins are used in calculations. Their rheological 
properties and thermal behavior are given in Table I.14J5 Polystyrene generally 
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Fig. 6. Exit height (HdHo)  as a function of upstream reservoir thickness (HIHo) for polystyrene: 
(-) incompressible model; ( - - - )  compressible model with Ho = 0.01 cm; (-.-) with Ho = 0.001 
cm. 

has higher melt viscosity than polyethylene, while it is less compressible than 
polyethylene a t  very high pressure. Typical pressure profiles for polyethylene 
compressible and incompressible models are shown in Figure 2. The com- 
pressible model has three distinct differences from the incompressible case: (1) 
It has substantially lower maximum pressure, (2) the location having maximum 
pressure moves closer to the nip region, and (3) the contact point X1 shifts closer 
to the nip region. 

Figures 3 and 4 give the amount of pressure difference A P  and location 
movement AX*, respectively. In general, polystyrene has a higher value of AP 
and AX* than polyethylene when the gap between the rolls are big. However, 
this phenomenon tends to reverse when the gap is reduced. In other words, the 
pressure developed between the rolls is low if the gap is large. Polystyrene has 
a higher viscosity so that it develops a much larger pressure field than polyeth- 
ylene. Therefore, the effect of polystyrene compressible behavior is more pro- 
nounced than that of polyethylene. However, an extremely large pressure de- 
velops in the nip region when the gap is small and melt density deviates from the 
incompressible case. The greater the polymer compressibility, the larger the 
difference in AP and AX*. 

In Figures 5 and 6, HJHo (exit height to gap height) is plotted against H/Ho 
(reservoir height to gap height) for polyethylene and polystyrene fluids, re- 
spectively. When the ratio HIHo is kept constant, the calendering of both 
compressible fluids produces higher values of HI/Ho than those calculated by 
assuming incompressible fluids. This phenomenon is enhanced in the case of 
small gap calendering. 

The above analysis clearly indicates that material compressibility strongly 
influences the operational variables and final products. 

In addition, in agreement with previous experimental work on PVC,lo the 
reduction in the magnitude of maximum pressure P and the movement of the 
contact point to the nip region, AX*, have been observed. Perhaps due to ex- 
perimental difficulty and inaccuracy, the shift of the location having maximum 
pressure has not been reported. Vlachopoulos and Hrymaklo proposed a slip 
boundary condition in order to explain this observed difference between the 
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predicted and the measured values. However, the present work suggests that 
these differences may also be partly due to the neglect of the effect of polymer 
compressible behavior. 

APPENDIX NOMENCLATURE 

E 
h 
H 
Ho 
Hi 
m 
n 
P 
Q 
R 
R’ 
R C  

T 
U 
uo 
vo 
W 
x1 

XO 
P 
7 

flow activation energy 
Ho (1 + X2/2H&), circumference of roll near the nip region 
reservoir height defined in Figure 1 
one-half of minimum gap width 
exit height defined in Figure 1 
constant defined in eq. (4) 
power law index 
pressure 
mass flow rate 
radius of roll 
gas constant 
constant in eq. (3) 
temperature 
velocity 
roll speed 
constant in eq. (3) 
constant in eq. (3) 
contact point 
leave-off point 
density 
shear stress 
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